Forming expressions

Tommy uses multilink cubes to represent an unknown number and base ten ones to represent 1

Write algebraic expressions to describe the sets of cubes.

The first one has been done for you.

2x + 3

- 2 Use Tommy's method to represent these expressions.
 - a) x + 2

c) 3x + 1

b) 2*x*

d)
$$x + 6$$

Compare answers with a partner.

The first one has been done for you.

a)
$$2y + 5 + y$$

3y + 5

b)
$$3a + 2 + a + a$$

c)
$$6p + 2 - 2p$$

d) m + 4 + 3m - 3

4 Complete the function machines.

Match each statement to the equivalent algebraic expression. Write the missing statements.

5 more than y

2*y*

y less than 5

y – 5

y multiplied by 5

5 *- y*

y divided by 5

y + 5

double y

5*y*

 y^2

Write an algebraic expression to represent the perimeter of each shape.

a)

d)

b)

e)

c)

Complete the bar models.

a

c)

)	c			

d)	d + 5			
			5	

